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A B S T R A C T

This article summarizes the likely benefits of melatonin in the attenuation of COVID-19 based on its putative
pathogenesis. The recent outbreak of COVID-19 has become a pandemic with tens of thousands of infected
patients. Based on clinical features, pathology, the pathogenesis of acute respiratory disorder induced by either
highly homogenous coronaviruses or other pathogens, the evidence suggests that excessive inflammation, oxi-
dation, and an exaggerated immune response very likely contribute to COVID-19 pathology. This leads to a
cytokine storm and subsequent progression to acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) and often death. Melatonin, a well-known anti-inflammatory and anti-oxidative molecule, is protective
against ALI/ARDS caused by viral and other pathogens. Melatonin is effective in critical care patients by re-
ducing vessel permeability, anxiety, sedation use, and improving sleeping quality, which might also be beneficial
for better clinical outcomes for COVID-19 patients. Notably, melatonin has a high safety profile. There is sig-
nificant data showing that melatonin limits virus-related diseases and would also likely be beneficial in COVID-
19 patients. Additional experiments and clinical studies are required to confirm this speculation.

1. Introduction

Coronaviruses (CoVs) are RNA viruses infecting both human and
animals; this infection involves the respiratory, gastrointestinal and
central nervous system [1]. Severe acute respiratory syndrome cor-
onavirus (SARS-CoV) and Middle East respiratory syndrome cor-
onavirus (MERS-CoV) are infectious and lethal, and have caused
thousands of deaths in the past two decades. The recent outbreak was
discovered in Wuhan, China; this highly contagious disease has spread
throughout China and other countries [2]. Although antiviral therapy,
corticosteroid therapy and mechanical respiratory support have been
applied, there is lack of a specific treatment for COVID-19 [2].

Melatonin (N-acetyl-5-methoxytryptamine) is a bioactive molecule
with an array of health-promoting properties; melatonin has been
successfully used to treat sleep disorders, delirium, atherosclerosis, re-
spiratory disease and viral infections [3]. Previous research has docu-
mented the positive effects of melatonin in alleviating acute respiratory
stress induced by virus, bacteria, radiation, etc. [4–6]. Herein, we re-
view the evidence indicating that melatonin will have supportive

adjuvant utility in treating COVID-19 induced pneumonia, acute lung
injury (ALI) and acute respiratory distress syndrome (ARDS).

2. Pathogenesis of COVID-19 and the rationale for melatonin use

Patients with COVID-19 (who were infected by SARS-CoV-2) are
reported to present with fever, dry cough, myalgia, fatigue, and diar-
rhea, etc. with symptoms varying somewhat with the patients' age. In
some cases, the severe progression of the disease results in ALI/ARDS,
respiratory failure, heart failure, sepsis, and sudden cardiac arrest
within a few days [2,7]. The pathogenic examination of lung specimens
from mild COVID-19 patients (who were retrospectively found to have
COVID-19 at the time of lung cancer surgery) showed edema, protei-
naceous exudate with globules, patchy inflammatory cellular infiltra-
tion and moderate formation of hyaline membranes [8]. In a post-
mortem assessment of a COVID-19 patient with severe ARDS,
specimens of infected lungs demonstrated bilateral diffuse alveolar
damage with edema, pneumocyte desquamation and hyaline membrane
formation [9].
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Though these pathological reports were reported in only a small
number of cases, the findings do resemble the pathological features
found in SARS- and MERS-induced pneumonia [10]. SARS-CoVs, MERS-
CoVs and SARS-CoV-2 are classified in beta-coronavirus family mem-
bers [11]. Recent published research suggests that SARS-CoV-2 shares
79.0% nucleotide identity to SARS-CoV and 51.8% identity to MERS-
CoV [12], indicating a high genetic homology among SARS-CoV-2,
MERS-CoV and SARS-CoV. In SARS-CoV and MERS-CoV infected an-
imal model, marked inflammatory and immune responses may activate
a “cytokine storm”, and apoptosis of epithelial cells and endothelial
cells; subsequently, vascular leakage, abnormal T cell and macrophages
responses ensue and induce ALI/ARDS or even death [13].

Based on genetic homology and pathologic features of the infected
lung, we predicted that a cytokine storm also prevails in patients with
COVID-19. In the blood of patients with COVID-19, there was a marked
increase in interleukin 1β (IL-1β), interferon γ (IFN-γ), interferon-in-
ducible protein 10 (IP-10), and monocyte chemoattractant protein 1
(MCP-1), as well as IL-4 and IL-10 when compared to that of SARS
patients. This suggests some potential difference from SARS and MERS
in the pathogenesis of coronavirus [2]. There is also a potential re-
pressed immune function in COVID-19 patients with the hypo-albumi-
nemia, lymphopenia, neutropenia, and decreased percentage of CD8+ T

cell [2,7]. Recent reports suggest that in some COVID-19 patients, al-
though being negative for the viral nucleic acid test, still sometimes
present with a high level of inflammation. A clinical trial using certo-
lizumab pegol (a TNF blocker) along with other anti-virus therapies
may have beneficial effects in COVID-19 patients. Collectively, the
finding indicates that inflammation is a major feature in COVID-19
patients. Thus, we hypothesize that excessive inflammation, depressed
immune system, and an activate cytokine storm substantially contribute
to the pathogenesis of COVID-19.

In the early stages of coronaviruses infection, dendritic cells and
epithelial cells are activated and express a cluster of pro-inflammatory
cytokines and chemokines including IL-1β, IL-2, IL-6, IL-8, both IFN-α/
β, tumor necrosis factor (TNF), CeC motif chemokine 3 (CCL3), CCL5,
CCL2, and IP-10, etc. These are under the control of immune system.
Thus, the overproduction of these cytokines and chemokines con-
tributes to the development in disease [14–16].

IL-10, produced by T-helper-2 (Th2), is antiviral, with an infection
of coronaviruses leading to a marked decrease in this agent [17,18].
Interestingly, COVID-19 patients sometimes have a significantly ele-
vated level of IL-10 [2]. Whether this is a feature of the COVID-19 in-
fection or the result of medical treatment is unknown. The amplifica-
tion of the inflammatory response would promote cellular apoptosis or

Fig. 1. Pathogenesis of COVID-19 and potential adjuvant use of melatonin. We postulated that lungs infected by SARS-CoV-2, and a suppressed immune response,
elevated inflammation and excessive oxidation stress proceed unabated, this results in the activation of the cytokine storm. ALI/ARDS may ensue, accompanied by a
series of complications, the outcomes of which vary according to the severity of the disease. Melatonin may play a role of adjuvant medication in the regulation of
immune system, inflammation and oxidation stress, and provide support for patients with ALI/ARDS and related complications. ALI: Acute lung injury; ARDS: Acute
respiratory distress syndrome.
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necrosis of the affected cells, which would further fuel inflammation,
followed by increasing permeability of blood vessels and the aberrant
accumulation of inflammatory monocytes, macrophages and neu-
trophils in the lung alveoli [19]. This vicious circle would intensify the
situation as the regulation of immune response is lost and cytokine
storm is further activated, resulting in dire consequences.

This putative “cytokine storm” pathology associated with cor-
onaviruses is also supported by experimental SARS-CoV models, one of
which showed that the severity of ALI was accompanied by an elevated
expression of inflammation-related genes rather than increased viral
titers. In another case, the ablation of IFN-α/β receptor or the depletion
of inflammatory monocytes/macrophages caused a marked rise in the
survival rate of coronaviruses host without a change in viral load
[19,20]. Both situations suggest a potential amplifying mechanism in-
volved in CoV-induced ALI/ARDS regardless of the viral load. If a si-
milar pathology also exists in COVID-19, the attenuation of the cytokine
storm by targeting several key steps in the process could bring about
improved outcomes.

Melatonin is not viricidal but it has indirect anti-viral actions [3]
due to its anti-inflammation, anti-oxidation and immune enhancing
features [21–24]. There are situations in which melatonin suppresses
the features of viral infections. In mice whose central nervous system is
infected by virus (e.g., encephalitis), the use of melatonin caused less
viremia, reduced paralysis and death, and decreased virus load [25]. In
previous respiratory syncytial virus models, melatonin caused down-
regulation of acute lung oxidative injury, pro-inflammatory cytokine
release and inflammatory cell recruitment. These findings, along with
those recently summarized by Reiter et al. [3], support a rationale for
melatonin use in viral diseases. Also, melatonin's anti-inflammation,
anti-oxidation, immune enhancing actions supports its potential at-
tenuation of COVID-19 infection (Fig. 1).

3. Melatonin & anti-inflammation

Melatonin exerts anti-inflammatory effects through various path-
ways. Sirtuin-1 (SIRT1) may mediate the anti-inflammatory actions of
melatonin by inhibiting high mobility group boxechromosomal protein
1 (HMGB1), and thus down-regulating the polarization of macrophages
towards the pro-inflammatory type [26]. In sepsis-induced ALI, the
proper regulation of SIRT1 attenuates lung injury and inflammation, in
which the application of melatonin might be beneficial [27]. Nuclear
factor kappa-B (NF-κB) is closely associated with pro-inflammatory and
pro-oxidative responses while being an inflammatory mediator in ALI.
The anti-inflammatory effect of melatonin involves the suppression of
NF-κB activation in ARDS [28,29]. Melatonin reportedly down-regulate
NF-κB activation in T cells and lung tissue [30,31]. The stimulation of
NF-E2-related factor 2 (Nrf2) is crucial in protecting lung from injury.
In related studies, melatonin induces the up-regulation of Nrf2 with
therapeutic effects in hepatoprotection, cardioprotection, etc. [32].
Whether Nrf2 is involved in the CoV-induced ALI remains unknown,
but the close interaction of SIRT1, NF-κB and Nrf2 suggests their par-
ticipation in the CoV-induced ALI/ARDS. As such, the data support the
potential anti-inflammatory action of melatonin. Inflammation is
commonly associated with an elevated production of cytokines and
chemokines, while melatonin causes a reduction in the pro-in-
flammatory cytokines. TNF-α, IL-1β, IL-6, and IL-8, and an elevation in
the level of anti-inflammatory cytokine IL-10 [33,34]. There may be,
however, some concerns about the potential pro-inflammatory actions
of melatonin when used in very high doses or under suppressed immune
conditions where it may induce an increase production of pro-in-
flammatory cytokines, IL-1β, IL-2, IL-6, IL-12, TNF-α, and IFN-γ [35].
Conversely, in ALI infection models, melatonin presents with anti-in-
flammatory and protective action [6].

4. Melatonin & anti-oxidation

The anti-oxidative effect of melatonin cooperates with its anti-in-
flammatory actions by up-regulating anti-oxidative enzymes (e.g. su-
peroxide dismutase), down-regulating pro-oxidative enzymes (e.g. ni-
tric oxide synthase), and it may also interact directly with free radicals,
functioning as free radical scavenger [3,4]. Viral infections and their
replication constantly generate oxidized products. In a SARS-induced
ALI model, the production of oxidized low density lipoprotein activates
innate immune response by the overproduction of IL-6 alveolar mac-
rophages via Toll-like receptor 4 (TLR4)/NF-kB signaling, thereby
leading to ALI [36]. TLR4 is a receptor for the innate immune system,
and it is also a therapeutic target for melatonin. In brain ischemia,
gastritis and periodontitis disease models, melatonin has documented
anti-inflammation actions via TLR4 signaling [37–39]. The anti-oxida-
tive effect of melatonin has also been confirmed in ALI caused by ra-
diation, sepsis and ischemia-reperfusion [4,40,41]. In ALI/ARDS pa-
tients, especially when the disease is advanced and in patients treated
in intense care units (ICUs), severe inflammation, hypoxemia and me-
chanical ventilation with high oxygen concentrations inevitably in-
creases oxidant generation locally and systematically [42,43]. Accord-
ingly, we speculate that excessive oxidation also is likely involved in
COVID-19. The extensive studies of Gitto et al. [44,45], who used
melatonin to treat newborn infants with respiratory distress, has
documented the anti-oxidant and anti-inflammatory actions of mela-
tonin in the lung. Thus, it is likely that the application of melatonin
would be beneficial in controlling the inflammation and oxidation in
coronavirus infected subjects.

5. Melatonin & immunomodulation

When virus is inhaled and infects respiratory epithelial cells, den-
dritic cells phagocytose the virus and present antigens to T cells.
Effector T cell function by killing the infected epithelial cells, and cy-
totoxic CD8+ T cells produce and release pro-inflammatory cytokines
which induce cell apoptosis [46]. Both the pathogen (CoV) and cell
apoptosis trigger and amplify the immune response. The exacerbation
of cytokine production, excessive recruitment of immune cells and the
uncontrollable epithelial damage generates a vicious circle for infection
related ALI/ARDS [47]. The clinical characteristics of COVID-19 sug-
gest that a reduced level of neutrophils, lymphocytes and CD8+ T cells
in peripheral blood [7,48]. Melatonin exerts regulatory actions on the
immune system and directly enhances the immune response by im-
proving proliferation and maturation of natural killing cells, T and B
lymphocytes, granulocytes and monocytes in both bone marrow and
other tissues [49]. In macrophages, antigen presentation is also aug-
mented after the application of melatonin, where the up-regulation of
complement receptor 3, MHC class I and class II, and CD4 antigens were
detected [50].

NOD-like receptor 3 (NLRP3) inflammasome is part of the innate
immune response during lung infection. The pathogen, including a
virus (CoVs has not yet been tested), triggers NLRP3 activation to
amplify the inflammation. There is probably a balance of the protective
and damaging actions of NLRP3 in the lung. Thus, in a mouse experi-
ment, inhibition of NLRP3 in the early phase of infection increased
mortality, whereas suppression of NLRP3 at the peak of infection al-
lowed for a protective effect [51]. This supports the use of melatonin in
ALI/ARDS when inflammation is most severe. Inflammasome NLRP3 is
correlated to lung diseases caused by infection, including influenza A
virus, syncytial virus, and bacteria [51–53]. The efficacy of melatonin
in regulating NLRP3 has been proven in radiation-induced lung injury,
allergic airway inflammation and oxygen-induced ALI and LPS-induced
ALI models, in which melatonin reduced the infiltration of macro-
phages and neutrophils into the lung in ALI due to the inhibition of
NLRP3 inflammasome [4,28,54,55].
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6. Melatonin effects in cytokine levels in human

Although there is obviously no report related to the use of melatonin
in COVID-19 patients, in subjects with other diseases and an increased
level of inflammation, the application of melatonin showed promising
results regarding the attenuation of circulating cytokines levels. In a
randomized controlled trial, 8-week oral intake of 6 mg/d melatonin
caused a significant decrease in serum levels of IL-6, TNF-α and hs-C-
reactive protein (hs-CRP) in patients with diabetes mellitus and peri-
odontitis [56]. In another trial of patients suffering with severe multiple
sclerosis, orally 25 mg/d of melatonin for 6 months also promoted a
significant reduction in serum concentrations of TNF-α, IL-6, IL-1β and
lipoperoxides [57]. In the acute phase of inflammation, including
during surgical stress [58], brain reperfusion [59], and coronary artery
reperfusion [60], melatonin intake of 10 mg/d, 6 mg/d and 5 mg/d of
melatonin for less than 5 days induced a reduced level of pro-in-
flammatory cytokines. A recent meta-analysis of a total of 22 rando-
mized controlled trials suggested that a supplementary use of melatonin
is associated with a significant reduction of TNF-α and IL-6 level [61].
This clinical evidence suggests that the use of melatonin as a supple-
ment may effectively reduce the levels of circulating cytokines, and
may potentially also lower pro-inflammatory cytokine levels in COVID-
19 patients.

7. Melatonin & other supportive adjuvant effects

The integrity of the vascular endothelial barrier is crucial in the
immunoregulation within alveoli. Severe inflammation and immune
responses induce epithelial and endothelial cell apoptosis, as well as
increasing the production of VEGF, which aggravates edema and the
extravasation of the immune cells from blood vessels. Experimental
evidence suggests that melatonin mediates the suppression of VEGF in
vascular endothelial cells [62]. Based on clinical reports of COVID-19,
patients with severe ALI/ARDS may also have an increased risk of sepsis
and cardiac arrest [2]. Published reports indicate that the application of
melatonin may ameliorate the septic shock via the NLRP3 pathway
[63]. Specifically, melatonin may a have preventive effect against
sepsis-induced renal injury, septic cardiomyopathy and liver injury
[64–66]. It was also reported that melatonin had benefits in patients
with myocardial infarction, cardiomyopathy, hypertensive heart dis-
eases and pulmonary hypertension, and probably functions via the
TLR4/survivor activating factor enhancement pathway [67]. Moreover,
melatonin exerts neurological protection by reducing the cerebral in-
flammatory response, cerebral edema and brain-blood barrier perme-
ability under a number of experimental conditions [68]. In the ICU,
deep sedation is associated with increased long-term mortality, and the
application of melatonin reduces sedation use and the frequency of
pain, agitation, anxiety [69,70]. Also, a recent meta-analysis showed
that melatonin improves sleep quality in patients in the ICU [71]. Thus,
the rationale for the use of melatonin in COVID-19 patients not only
focuses on the attenuation of the infection-induced respiratory dis-
orders, but also on an overall improvement and prevention of patients'
wellbeing and potential complications.

8. Melatonin & safety

When considering the use of melatonin to treat COVID-19, the
safety of the melatonin is of utmost significance to consider. As re-
viewed previously, short-term use of melatonin is safe, even in those
given high doses, and the reported adverse effects are limited to occa-
sional dizziness, headache, nausea and sleepiness; in general melato-
nin's safety in humans is very high [72]. In clinical trials, doses of 3 mg,
6 mg and 10 mg of melatonin oral intake by patients in ICU showed
satisfactory safety when compared to placebo [70,73,74]. Also, even
when melatonin was given to humans at dose of 1 g/d for a month,
there were no adverse reports of the treatment [75]. Finally, there were

no adverse effects recorded after the use of melatonin in ALI/ARDS
animal studies [3,4,28]. While the safety of melatonin has been verified
in many human studies, its effect when given to COVID-19 patients
should be carefully monitored despite the very high safety profile of
melatonin.

9. Conclusion

The possible beneficial effects of melatonin as adjuvant use in
COVID-19 in anti-inflammation, anti-oxidation, immune response reg-
ulation has been repeatedly demonstrated in respiratory disorder
models induced by infections and associated complications. Melatonin
has a high safety profile. Although the direct evidence of melatonin
application in COVID-19 is unclear, both its use in experimental animal
models and in studies on humans has continuously documented its ef-
ficacy and safety and its use by COVID-19 patients predictably would be
highly beneficial.
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